embedding

BAAIBGE Embedding ICL

BGE Embedding ICL is an excellent all-around model for text embedding.

Model details

View repository

Example usage

BAAI/bge-en-icl is a text-embeddings model, producing a 1D embeddings vector, given an input. It's frequently used for downstream tasks like clustering, used with vector databases.

This model is quantized to FP8 for deployment, which is supported by Nvidia's newest GPUs e.g. H100, H100_40GB or L4. Quantization is optional, but leads to higher efficiency.

Input
1from openai import OpenAI
2import os
3
4client = OpenAI(
5    api_key=os.environ['BASETEN_API_KEY'],
6    base_url="https://model-xxxxxx.api.baseten.co/environments/production/sync/v1"
7)
8
9embedding = client.embeddings.create(
10    input="Baseten Embeddings are fast",
11    model="model"
12)
JSON output
1{
2    "data": [
3        {
4            "embedding": [
5                0
6            ],
7            "index": 0,
8            "object": "embedding"
9        }
10    ],
11    "model": "thenlper/gte-base",
12    "object": "list",
13    "usage": {
14        "prompt_tokens": 512,
15        "total_tokens": 512
16    }
17}

embedding models

See all
Allen AI
Embedding

Tulu 3 8B Reward

V3 - Reward - BEI - H100 MIG 40GB
BAAI
Embedding

BGE Reranker M3

BEI - H100
BAAI
Embedding

BGE Embedding ICL

BEI - H100

BAAI models

See all
BAAI
Embedding

BGE Reranker M3

BEI - H100
BAAI
Embedding

BGE Embedding ICL

BEI - H100

🔥 Trending models